BD04 – příklad 1

1. Konstrukce

2. Materiál a profil

Beton C 25/30 (E = 24 GPa, v = 0,2)

3. Zatížení

Pouze zatížení dle schématu bez vlastní tíhy.

Postup zadání a výpočtu v RFEMu

1. Po spuštění RFEMu zvolíme typ modelu – v našem případě jde o 2D – XZ. Nový model pojmenujeme, např. *Úloha 1.*

Obecné Možnosti Historie			
Název modelu	Popis		
Úloha 1			
Název projektu	Popis		
🗀 Příklady	-		
Složka:			S
C:\Program Files\Dlubal\Příkla	dy		
Typ modelu		Klasifikace zatěžovacích stavů	a kombinací
🕑 3D		Podle normy:	Národní příloha:
D 2D - XY (uz/qx/qy)	→x	EN 1990 + EN 1995	👻 💽 CEN 🛛 🔻 💽
<u>2</u> D - XZ (ux/uz/φγ) <u>1</u>		🔲 Automatiala un tua 🏧 kambin	
© 2D - X <u>Y</u> (ux/uγ/φz)		Automatický vytvoří Kombin A Kombinace zatížení	ace
		 Kombinace výsledků (por 	uze pro lineární analýzu)
l Kladná orientace globální osy Z		Šabiona	
🔿 Nahoru		Otevřít model ze šablony:	
Olů			- 3
Komentář			
			- 🖻

2. Začneme zadáním materiálu. V navigátoru projektu klikneme pravým tlačítkem na *Materiály* a zvolíme *Nový materiál*.

😪 RFEM 5.01 - [Úloha 1*]	100 000		
Soubor Úpr <u>a</u> vy Zo	obrazit Vlož <u>i</u> t Vý <u>p</u> očet	Výsled <u>k</u> y	Nástroj
i 🗋 🗃 🕄 🅄 🛄 🗐 🕅		o 😴	
1 · · / 2 · 2 ·	🛓 🏪 🖕 🎮 - 🏁 哲	1 🛍 -	0 - 2
Navigátor projektu - Data	άx	10. 10.	36
RFEM	*		
🗄 🙀 Úloha 1* [Příklady]			
Uzly			
Linie			
B Plochy	Upravit materiál		Enter
🛄 Télesa 🚼	Nový materiál		
📴 Otvory 😭	Jdi do tabulky		
Liniové 🚿	Smazat všechny materiály		Del
📴 Plošné 📷	Smazat všechny nepřiřazen	é materiál	y .
🔤 Liniové	75kladal údala		
Promér 🛅	Zakladni udaje		
E Průřezy	Seunotky a desetinina mista	10	
Klouby 🎘	Nastavení zobrazení		

3. Kliknutím na ikonu vybereme v knihovně zadaný materiál. V našem případě jde o beton C 25/30. Skupinu norem zvolíme EN.

Databáze materiálů			×
Filtr	Převzít materiál		
Skupina kategorií materiálu:	Označení materiálu	Norma	-
Beton	➡ Beton C12/15	EN 1992-1-1:2004/AC:2010	
	🔲 Beton C16/20	EN 1992-1-1:2004/AC:2010	
Kategorie materiálu:	Beton C20/25	EN 1992-1-1:2004/AC:2010	
Beton	 Beton C25/30 	EN 1992-1-1:2004/AC:2010	
Churches and an	Beton C30/37	EN 1992-1-1:2004/AC:2010	
Skupina norem:	🔲 Beton C35/45	EN 1992-1-1:2004/AC:2010	
EN	Teton C40/50	EN 1992-1-1:2004/AC:2010	11
Norma:	🔲 Beton C45/55	EN 1992-1-1:2004/AC:2010	
EN 1992-1-1-2004/AC-201	📕 🔲 Beton C50/60	EN 1992-1-1:2004/AC:2010	
EN TOOL T TEOONTO.LOT	Beton C55/67	EN 1992-1-1:2004/AC:2010	
	Beton C60/75	EN 1992-1-1:2004/AC:2010	
	Beton C70/85	EN 1992-1-1:2004/AC:2010	
	🔲 Beton C80/95	EN 1992-1-1:2004/AC:2010	
Včetně neplatných	💽 🔲 Beton C90/105	EN 1992-1-1:2004/AC:2010	•
Pouze oblíbené	2 h		X

4. Z knihovny jsme tak převzali beton C 25/30 s jeho předdefinovanými materiálovými charakteristikami.

Nový materiál			×
Č. Barva tisku Ozn	ačení		1
2 🛛 🐼 Be	ton C25/30		
Materiálové konstanty			1
Modul pružnosti	E :	31000.000	[MPa]
Smykový modul	G:	13100.000	[MPa]
Poissonův součinitel	v:	0.183	[-]
Měrná tíha	γ:	25.00	[kN/m ³]
Součinitel teplotní roztažnosti	ol:	1.0000E-05	[1/°C]
Dílčí součinitel spolehlivosti	γм :	1.00	Ð
Materiálový model:		Izotropní	•
Komentář			
			- 🗗
		OK	Storno

5. Pokud chceme mít hodnoty modulů pružnosti uvedeny v GPa, jako je tomu v zadání, klikneme na ikonu a změníme jednotky.

Materialy		
	Jednotka	Des. místa
Moduly E, G:	GPa	- 3 - 4
Měmé tíhy:	kN/m^3	- 2 -
Souč. teplotní roztažnosti:	[1/℃	▼ 2 ÷
Poissonovy	1	- 3‡ •
Součinitele:	-	- 2 - 4

6. Podle zadání přepíšeme hodnotu modulu pružnosti *E* a hodnotu Poissonova součinitile *v*.

5. Barva tisku Ozna	čení		
2 📗 🐼 Beto	in C25/30		<u>a</u>
Materiálové konstanty			
Modul pružnosti	Ε:	24.000 🔃 [GPa]	
Smykový modul	G:	10.000 💠 [GPa]	
Poissonův součinitel	v:	0.200 🔃 [-]	
Měrná tíha	γ:	25.00 🔃 [kN/m ³	1
Součinitel teplotní roztažnosti	α:	1.0000E-05 + [1/°C]	
Dílčí součinitel spolehlivosti	γ M :	1.00 🜩 [·]	
Materiálový model:		Izotropní	•
Komentář			··· ···
			-

7. Přistoupíme k zadání průřezu. V navigátoru projektu klikneme pravým tlačítkem na *Průřezy* a zvolíme *Nový průřez*.

💸 RFEM 5.01 - [Úloha 1*]	1. 1998 A.	
Soubor Úpr <u>a</u> vy	Zobrazit Vlož <u>i</u> t Vý <u>p</u> o	čet Výsled <u>k</u> y
i 🗋 💕 🕄 🕄 🛄 🕮	BASCI	
· · / 2 · 2 ·	2 2 5 S A - 2	<u>a Ki 🗗 -</u>
Navigátor projektu - Data	д×	2.
	dpory 🔺	
📴 Plošné poc 📴 Liniové klo	lpory uby	
Proměnné Proměnné	tloušťky plochy	
Průřej		
🛅 Kloub 🔛	Upravit prûřez	Enter
🔯 Excen 📁	Nový průřez	
🔀 Dělen ᢖ	Jdi do tabulky	
🖄 Pruty 🛅 Žebra 🚿	Smazat všechny průřezy	Del
📴 Podla 👬	Smazat nepřiřazené prů	iřezy
🗓 Nelin 🚵 Sady 🖆	Základní údaje	
📴 Průnil 🚥	Jednotky a desetinná m	iísta
🔤 🛄 Zahuštění	sítě prvků	±

8. Průřez můžeme zadat v knihovnách kliknutím na ikonu 🔊 nebo přímo kliknutím na ikonu obdélníkového průřezu 🖳 . Zvolíme parametry průřezu.

1		19
Ь:	300.0	[mm]
h:	400.0 🜩	[mm]

9. Námi vytvořený obdélníkový průřez by měl vypadat následovně. Materiál průřezu byl automaticky zvolen jako beton C 25/30. Máme-li definováno více materiálů, můžeme jej pro daný průřez změnit v poli se seznamem.

1		Obdélník 300	/400		
Dbecné N	atočení			Obdélník 300/400	
růřezové c	harakteris	tiky		-	300.0
Momenty se	trvačnosti				
<routici< th=""><th>IT:</th><th><u>6</u></th><th>[mm⁴]</th><th></th><th></th></routici<>	IT:	<u>6</u>	[mm ⁴]		
Jhubovú	be: [160000007	(mm ⁴)		
	la :	1 A	Imm ⁴]		
	1	(تعالمين			
^D růřezové p	ilochy			8	////// ///////////////////////////////
Celková	A: [120000.0	[mm ²]	4	
Smyková	Ay :	* * V	[mm ²]		
	Az : [100000.0	[mm ²]		
Sklon hlavn	ích os				
Íhel	α: [0.00 💠 🛌	[*]		
Celkové rozi	měru ínrn m	nerovnoměrné zalíží	ení tenlotou)		ím
Šířka	b: [300.0 🔃	[mm]	A	
√ýška	h: [400.0	[mm]		
		Cat Of		Materiál	10 12
omentář				🔲 2 Beton C2	25/30 EN 1992-1-1:2004/AC:2010
				•	

10. Zajímají-li nás průřezové charakteristiky, klikneme na ikonu 主 .

Označení hodnoty průřezu	Symbol	Hodnota	Jednotky
Šiřka profilu	Ь	300.0	mm
Výška profilu	h	400.0	mm
Plocha průřezu	A	120000.0	mm ²
Smyková plocha	Ay	100000.0	mm ²
Smyková plocha	Az	100000.0	mm ²
Moment setrvačnosti (plošný moment 2. stupné	ly	1.600E+09	mm ⁴
Moment setrvačnosti (plošný moment 2. stupné	lz	9.000E+08	mm ⁴
Poloměr setrvačnosti	iy	115.5	mm
Poloměr setrvačnosti	İz	86.6	mm
Hmotnost průřezu	G	300.0	kg/m
Plocha pláště	0	1.400	m²/m
Moment tuhosti v kroucení	lt	1.943E+09	mm ⁴
Průřezový modul v kroucení	Wt	8316000.0	mm ³
Průřezový modul	Wy	8000000.0	mm ³
Průřezový modul	Wz	6000000.0	mm ³
Plastický průřezový modul	Wpl,y,max	1.200E+07	mm ³
Statický moment	Sy,max	6000000.0	mm ³
Statický moment	Sz,max	4500000.0	mm ³

11. Přejdeme k zadání geometrie. Způsobů, jak vytvořit konstrukci je několik. Tím nejjednodušším je přímé vykreslení prutů. Vybereme tak například ikonu *Prut spojitě*.

RFEM 5.01 -	[Úloha 1*]	
Soubor	Úpr <u>a</u> vy <u>Z</u> obrazit Vložji	t Vý
i 🗋 🧀 🗿 🖁		21
· · · / 1	2- 2	- 1×1
Navigátor pr 🎐	Prut jednotlivě	×
RFEM	Prut spojitě	
🗄 👔 Úlo 🏏	Vložený prut	
	Vybrat linie	
- ×	Sada prutů	
ė- u	iviaterialy	4

12. Průřez prutu byl automaticky nastaven na námi vytvořený obdélník 300/400.

Prut č.		Typ prutu	
1		Nosnik	• 2
Uzel č.		Obdélník 300/400	
Natočení prutu			
Úhel	β: 0.00 👘 [*]		//// ·*y
🕐 Pom. uzel	Č. Uvnitř 👻 🐚		
V rovině:	@ x-y		
	© x-2	1	
Průřez		1 .)	
Počátek prutu:	1 Obdélník 300/400 Beton C25/	30 🔲 🖻	
Konec prutu:	1 Obdélník 300/400 Beton C25/	80	
Kloub			
Počátek prutu:	Není	<u>j</u> e	• 🎦 💌
Konec prutu:	Není		- 🖳 📼

13. Na pracovní ploše klikneme nejlépe do některého bodu rastru (ten je přednastaven na rozteč
1 m) a táhneme prut do dalšího bodu, který vytvoříme kliknutím myši.

Nový prut (Linie)		
Prut č.	Uzel č.	-
Vztáhnout k	Souřadnice	42
 Aktuálnímu s. s. Počátku rastru Poslednímu uzlu 	X: 0.000 + [m] Y: + [m] Z: 0.000 + [m]	5
	Délka L: ★ [m] Krok ΔL ★ [m]	*
2.2.2		X: 0.000 Y: 0.000 Z: 0.000
	Použít	

14. Takto vytvoříme konstrukci. Chceme-li ukončit spojité vykreslování, klikneme do plochy pravým tlačítkem myši. S vykreslováním pak můžeme pokračovat jinde. Chceme-li ukončit vykreslování prutů, klikneme pravým tlačítkem dvakrát.

15. Dále je potřeba konstrukci podepřít. Zvolíme možnost Uzlové podpory.

16. Ve spodní části je použito vetknutí, které vybereme v poli se seznamem.

Nová uzlová podpora		×
Typ podpory		
🗹 🗹 🗖 Kloub	1.42	

Vetknutí	 $\left \right $	
	÷	
		x 🛐 🛐 🚳
Ø		OK Storno

17. Uzlovou podporu přisoudíme danému uzlu tak, že jej vybereme.

18. Stejným způsobem vytvoříme i druhou podporu.

19. Když je konstrukce hotová, přejdeme k poslední části, a tou jsou zatěžovací stavy. Pravým kliknutím na *Zatěžovací stavy* vybereme *Nový zatěžovací stav*.

20. Zatěžovací stav pojmenujeme a odškrtneme možnost aktivní vlastní tíhy, jelikož ji řešit nechceme.

tezovaci stavy Kombinace zatížení Kombin	nace výsledků			
kistující zatěžovací stavy	ZS č.	Označení zatěžovacího stavu		Řešit
G ZS1 Užitné zatížení		Užitné zatížení		-
	Obecné Parar	netry výpočtu		
	Typ účinku	EN 1990 + 1995 CEN	Vlastní tíha	
	G Stálé	· ·	Aktivní	
	Doba trvání zat	žení	učinitel ve směru:	
	Třída:	United and	× ÷	
	Stálé zatížen Dlouhodobé	nî Tetilenî	Z 🖓	
	 Střednědobe 	é zatížení		
	C Krátkodobé	zatížení		
		izem		
			S	
_	- Komentář			
			- 17	52 I

21. Vybereme Nové zatížení na prut graficky.

Tabulka	Nasta <u>v</u> eni	Přídavné modu <u>l</u> y	<u>O</u> kno	<u>N</u> ápověd
💁 ZS1	Užitné zati	žení	•	0 > 🦻
9 12	- 🏤 - 🍕	20 20 20 20 20 20 20 20 20 20 20 20 20 2	- 1	Q Q (
				1
		Nové zatížení na	a prut gr	aficky

22. Začneme vytvořením spojitého zatížení. Typ zatížení je *Síla*, její průběh je *Konstantní* a působí ve směru *X*. Jelikož je zatížení přes dva pruty, můžeme jej vztáhnout na *Seznam prutů*.

Č. Vztáhno Pruty Sezn Sady	ut na am prutů prutů	Na sezname	ich prutů č.	Typ zatížení 'Síla' Průběh zatížení 'konstantnî'
Typ zatižení Síla Moment Teplota Protažení Podélný posun Zakřívení Počáteční předpětí Konečné předpětí Extra: Vynucený posun	Průběh zatů © Osamělé P @ Konstan © Lichobě © Proměnn	žení ś: • trní žníkové né	Směr zatížení Lokálně vztaženo na skutečnou v dělku prutu: 2 Globálně vztaženo na skutečnou délku prutu: 2 Globálně vztaženo na průmět délky prutu: 2 Z	x y z xL YL zL xP YP zP Směr zatížení 'Globální XL' y y y x y y y x y y z z x y z z x y z z x y z z x y z z x y z z x y z z x y z z x y z x y z x y z x y z x y x y z x y x x y x x x y x x y x y x y x y x y x y x y x y x y x y x x x x y x x x y x x x x x x x x x x x x x
Parametry zatižení na prut p: 4.000 (*) k p: * * K p: * * K p: * * K p: * * K komentář	N/m] A N/m] B N/m] [N/m] [: Poměrná vzd Zatížení přes seznamu pru	<pre></pre>	

23. Vybereme dva svislé pruty, na kterých působí spojité zatížení.

e¥					1						
÷											
>	Vic Vyb	:enásobnj irat pruty	ý výběr	U	k						
vy 1.	vbráno: 3										
0	Vyčistit		ОК	Storno							
*	t	82	22	#11 57-							
а .											
-					-						
		16	8	*		÷	*	-	4	£	¥.)

24. Takto jsme vytvořili spojité zatížení. Stejným způsobem vytvoříme i osamělou sílu.

Nové zatížení na prut	12 2	1.11.11 P	
Č. Vztáh 2 © Pru © Se © Sa	nout na N uty sznam prutů udy prutů	a prutech č.	Typ zatížení 'Sila' Průběh zatížení 'osamělé' P
Typ zatižení Síla Moment Teplota Protažení Podélný posun Zakřivení Počáteční předpětí Konečné předpětí Extra: Vynucený posun	Průběh zatižení © Osamělé: P © Konstantní © Lichoběžník © Proměnné	Směr zatížení Lokálně x vtaženo na skutečnou y délku prutu: z Globálně XL vztaženo na skutečnou YL délku prutu: 2 Globálně XL vztaženo na skutečnou YL délku prutu: 2 Globálně XL vztaženo na průmět XP délky prutu: YP ZP	Směr zatížení 'Globální ZL'
Parametry zalížení na pru P: 12.000 p P:	t [KN] A: [[KN] B: [[KN] Pc [[KN] Pc [[KN] 22 [[KN/m] 2	3.000 () [m]) [m]) měrná vzdálenost v % třížení přes celou délku .tu	z z z z z z z z z z z z z z z z z z z
(2) 2 (2) (3)			OK Storno

25. Výsledná konstrukce by měla vypadat následovně.

4.000				12.0	000		
ùt.							*
116							
34				2			
谱							
52							
:#							
4.000							
iit		<u>8</u> 2	ŧŰ	æ	÷	S¥.	ia.

26. Před spuštěním výpočtu je vhodné zadat Kontrolu správnosti.

Nápověda				
> 2	1×× 🔎	× 6	ह्य स्थि	· · · · · · · · · · · · · · · · · · ·
Q Q (1 1 1 1	x 71	ATT -	N-12-17
		ei.	Kontrola	spravnosti

- 27. Je-li vše v pořádku, klikneme na Spočítat vše.
- 28. V navigátoru projektu zvolíme kartu Výsledky. Zde si vybereme, co chceme vykreslit.

29. Průběh ohybových momentů by mohl vypadat následovně.

18	t	£ 3	8	 : 5		*	<u>8</u> 1
	847 1111-1-1	-			-	10	6.442
-121041			ـــــــــــــــــــــــــــــــــــــ				
					† 4.0)25	
	5.501						
		11.558					
					*		
	7.975						

30. Pokud nás zajímá detailnější průběh výsledků na některém prutu/prutech, dané pruty vybereme a klikneme na *Průběhy výsledků na vybraných prutech*.

31. Zde si můžeme detailněji prohlédnout průběhy, které nás zajímají.

